“数理论坛”第55期:Dynamics and profiles of a PDE Cholera model with distinct dispersal rates

发布人:毕洁发表时间:2018-05-07点击:

报告时间:2018年5月7日16:00——17:00

报告地点:基础楼311

报告题目:Dynamics and profiles of a PDE Cholera model with distinct dispersal rate、

报告人: 王金良(黑龙江大学)

简介:王金良,黑龙江大学数学科学学院教授,硕士生导师。黑龙江省数学会理事。2011年毕业于哈尔滨工业大学,获理学博士学位。2012年起在黑龙江大学数学科学学院参加工作。2009年10月至2010年9月,日本静冈大学联合培养博士生。2013年3月至2015年11月在西南大学做博士后研究工作。2014年9月至2015年8月加拿大西安大略大学访问学者。研究方向为生物动力系统建模及其动力学性质分析。已发表SCI检索论文50余篇。其中2014-2017年每年各有一篇论文入选web of science高被引论文。主持国家自然科学基金两项,黑龙江省自然基金一项,省教育厅人才类项目两项,主持中国博士后基金和重庆市博士后特别资助各一项。主持召开四次“生物数学建模及其动力学分析国际研讨会”,多次出访加拿大,美国,日本进行学术交流。

报告摘要:Spatial heterogeneity plays an important role in spread of infectious diseases, and hence, motivates and advocates diffusive models for disease dynamics. By analyzing a diffusive Cholera model with the bilinear incidence infection mechanism, heterogeneous parameters and distinct dispersal rates for the susceptible and infected hosts, we have investigated the asymptotical profiles of the endemic steady state as the dispersal rate of the susceptible or infected hosts approaches zero. Some arguments, such as, existence of global solution, uniform bounded of solution, asymptotic smoothness of semiflow andexistence of global attractor are also addressed. We then identify the basic reproduction number R0 for the model and prove its threshold role: if R0<1, the disease free equilibrium is globally asymptotically stable; if R0>1, the solution of the model is uniformly persistent and there exists a positive steady state. Finally, we demonstrate some biological implications on the mobility of hosts and the spatial heterogeneity.